Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems (1805.02832v1)

Published 8 May 2018 in cs.SY

Abstract: Multi-agent coordination control usually involves a potential function that encodes information of a global control task, while the control input for individual agents is often designed by a gradient-based control law. The property of Hessian matrix associated with a potential function plays an important role in the stability analysis of equilibrium points in gradient-based coordination control systems. Therefore, the identification of Hessian matrix in gradient-based multi-agent coordination systems becomes a key step in multi-agent equilibrium analysis. However, very often the identification of Hessian matrix via the entry-wise calculation is a very tedious task and can easily introduce calculation errors. In this paper we present some general and fast approaches for the identification of Hessian matrix based on matrix differentials and calculus rules, which can easily derive a compact form of Hessian matrix for multi-agent coordination systems. We also present several examples on Hessian identification for certain typical potential functions involving edge-tension distance functions and triangular-area functions, and illustrate their applications in the context of distributed coordination and formation control.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube