Dimensional crossover with a continuum of critical exponents for NLS on doubly periodic metric graphs (1805.02521v1)
Abstract: We investigate the existence of ground states for the focusing nonlinear Schroedinger equation on a prototypical doubly periodic metric graph. When the nonlinearity power is below 4, ground states exist for every value of the mass, while, for every nonlinearity power between 4 (included) and 6 (excluded), a mark of $L2$-criticality arises, as ground states exist if and only if the mass exceeds a threshold value that depends on the power. This phenomenon can be interpreted as a continuous transition from a two-dimensional regime, for which the only critical power is 4, to a one-dimensional behavior, in which criticality corresponds to the power 6. We show that such a dimensional crossover is rooted in the coexistence of one-dimensional and two-dimensional Sobolev inequalities, leading to a new family of Gagliardo-Nirenberg inequalities that account for this continuum of critical exponents.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.