Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QARC: Video Quality Aware Rate Control for Real-Time Video Streaming via Deep Reinforcement Learning (1805.02482v3)

Published 7 May 2018 in cs.MM

Abstract: Due to the fluctuation of throughput under various network conditions, how to choose a proper bitrate adaptively for real-time video streaming has become an upcoming and interesting issue. Recent work focuses on providing high video bitrates instead of video qualities. Nevertheless, we notice that there exists a trade-off between sending bitrate and video quality, which motivates us to focus on how to get a balance between them. In this paper, we propose QARC (video Quality Awareness Rate Control), a rate control algorithm that aims to have a higher perceptual video quality with possibly lower sending rate and transmission latency. Starting from scratch, QARC uses deep reinforcement learning(DRL) algorithm to train a neural network to select future bitrates based on previously observed network status and past video frames, and we design a neural network to predict future perceptual video quality as a vector for taking the place of the raw picture in the DRL's inputs. We evaluate QARC over a trace-driven emulation. As excepted, QARC betters existing approaches.

Citations (95)

Summary

We haven't generated a summary for this paper yet.