Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Star-galaxy classification in the Dark Energy Survey Y1 dataset (1805.02427v3)

Published 7 May 2018 in astro-ph.IM and astro-ph.CO

Abstract: We perform a comparison of different approaches to star-galaxy classification using the broad-band photometric data from Year 1 of the Dark Energy Survey. This is done by performing a wide range of tests with and without external `truth' information, which can be ported to other similar datasets. We make a broad evaluation of the performance of the classifiers in two science cases with DES data that are most affected by this systematic effect: large-scale structure and Milky Way studies. In general, even though the default morphological classifiers used for DES Y1 cosmology studies are sufficient to maintain a low level of systematic contamination from stellar mis-classification, contamination can be reduced to the O(1%) level by using multi-epoch and infrared information from external datasets. For Milky Way studies the stellar sample can be augmented by ~20% for a given flux limit. Reference catalogs used in this work will be made available upon publication.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.