Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Lipschitz $p$-summing multilinear operators (1805.02115v2)

Published 5 May 2018 in math.FA

Abstract: We apply the geometric approach provided by $\Sigma$-operators to develop a theory of $p$-summability for multilinear operators. In this way, we introduce the notion of Lipschitz $p$-summing multilinear operators and show that it is consistent with a general panorama of generalization: Namely, they satisfy Pietsch-type domination and factorization theorems and generalizations of the inclusion Theorem, Grothendieck's coincidence Theorems, the weak Dvoretsky-Rogers Theorem and a Lindenstrauss-Pelczy\'nsky Theorem. We also characterize this new class in tensorial terms by means of a Chevet-Saphar-type tensor norm. Moreover, we introduce the notion of Dunford-Pettis multilinear operators. With them, we characterize when a projective tensor product contains $\ell_1$. Relations between Lipschitz $p$-summing multilinear operators with Dunford-Pettis and Hilbert-Schmidt multilinear operators are given.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.