Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian active learning for choice models with deep Gaussian processes (1805.01867v1)

Published 4 May 2018 in stat.ML and cs.LG

Abstract: In this paper, we propose an active learning algorithm and models which can gradually learn individual's preference through pairwise comparisons. The active learning scheme aims at finding individual's most preferred choice with minimized number of pairwise comparisons. The pairwise comparisons are encoded into probabilistic models based on assumptions of choice models and deep Gaussian processes. The next-to-compare decision is determined by a novel acquisition function. We benchmark the proposed algorithm and models using functions with multiple local optima and one public airline itinerary dataset. The experiments indicate the effectiveness of our active learning algorithm and models.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.