Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Solution of Linear Ordinary Differential Equations by Conjugate Gradient Method (1805.01085v2)

Published 3 May 2018 in math.NA

Abstract: Solving initial value problems and boundary value problems of Linear Ordinary Differential Equations (ODEs) plays an important role in many applications. There are various numerical methods and solvers to obtain approximate solutions represented by points. However, few work about optimal solution to minimize the residual can be found in the literatures. In this paper, we first use Hermit cubic spline interpolation at mesh points to represent the solution, then we define the residual error as the square of the L2 norm of the residual obtained by substituting the interpolation solution back to ODEs. Thus, solving ODEs is reduced to an optimization problem in curtain solution space which can be solved by conjugate gradient method with taking advantages of sparsity of the corresponding matrix. The examples of IVP and BVP in the paper show that this method can find a solution with smaller global error without additional mesh points.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube