Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the concentration phenomenon of $L^2$-subcritical constrained minimizers for a class of Kirchhoff equations with potentials (1805.01059v1)

Published 3 May 2018 in math.AP

Abstract: In this paper, we study the existence and the concentration behavior of minimizers for $i_V(c)=\inf\limits_{u\in S_c}I_V(u)$, here $S_c={u\in H1(\RN)|~\int_{\RN}V(x)|u|2<+\infty,~|u|_2=c>0}$ and $$I_V(u)=\frac{1}{2}\ds\int_{\RN}(a|\nabla u|2+V(x)|u|2)+\frac{b}{4}\left(\ds\int_{\RN}|\nabla u|2\right)2-\frac{1}{p}\ds\int_{\RN}|u|{p},$$ where $N=1,2,3$ and $a,b>0$ are constants. By the Gagliardo-Nirenberg inequality, we get the sharp existence of global constraint minimizers for $2<p<2*$ when $V(x)\geq0$, $V(x)\in L{\infty}_{loc}(\RN)$ and $\lim\limits_{|x|\rightarrow+\infty}V(x)=+\infty$. For the case $p\in(2,\frac{2N+8}{N})\backslash{4}$, we prove the global constraint minimizers $u_c$ behave like $$ u_{c}(x)\approx \frac{c}{|Q_{p}|2}\left(\frac{m{c}}{c}\right){\frac{N}{2}}Q_p\left(\frac{m_{c}}{c}x-z_c\right).$$ for some $z_c\in\RN$ when $c$ is large, where $Q_p$ is up to translations, the unique positive solution of $-\frac{N(p-2)}{4}\Delta Q_p+\frac{2N-p(N-2)}{4}Q_p=|Q_p|{p-2}Q_p$ in $\RN$ and $m_c=(\frac{\sqrt{a2D_12-4bD_2i_0(c)}+aD_1}{2bD_2}){\frac12}$, $D_1=\frac{Np-2N-4}{2N(p-2)}$ and $D_2=\frac{2N+8-Np}{4N(p-2)}$.

Summary

We haven't generated a summary for this paper yet.