On critical $p$-Laplacian systems
Abstract: We consider the critical $p$-Laplacian system \begin{equation}\label{92} \begin{cases}-\Delta_p u-\frac{\lambda a}{p}|u|{a-2}u|v|b =\mu_1|u|{p\ast-2}u+\frac{\alpha\gamma}{p\ast}|u|{\alpha-2}u|v|{\beta}, &x\in\Omega,\ -\Delta_p v-\frac{\lambda b}{p}|u|a|v|{b-2}v =\mu_2|v|{p\ast-2}v+\frac{\beta\gamma}{p\ast}|u|{\alpha}|v|{\beta-2}v, &x\in\Omega,\ u,v\ \text{in } D_0{1,p}(\Omega), \end{cases} \end{equation} where $\Delta_p:=\text{div}(|\nabla u|{p-2}\nabla u)$ is the $p$-Laplacian operator defined on $D{1,p}(\mathbb{R}N):={u\in L{p\ast}(\mathbb{R}N):|\nabla u|\in Lp(\mathbb{R}N)}$, endowed with norm $|u|{D{1,p}}:=\big(\int{\mathbb{R}N}|\nabla u|p\text{d}x\big){\frac{1}{p}}$, $N\ge3$, $1<p<N$, $\lambda, \mu_1, \mu_2\ge 0$, $\gamma\neq0$, $a, b, \alpha, \beta > 1$ satisfy $a + b = p, \alpha + \beta = p\ast:=\frac{Np}{N-p}$, the critical Sobolev exponent, $\Omega$ is $\mathbb{R}N$ or a bounded domain in $\mathbb{R}N$, $D_0{1,p}(\Omega)$ is the closure of $C_0\infty(\Omega)$ in $D{1,p}(\mathbb{R}N)$. Under suitable assumptions, we establish the existence and nonexistence of a positive least energy solution. We also consider the existence and multiplicity of nontrivial nonnegative solutions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.