Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scattering and blowup for $L^{2}$-supercritical and $\dot{H}^{2}$-subcritical biharmonic NLS with potentials (1810.07104v1)

Published 16 Oct 2018 in math.AP

Abstract: We mainly consider the focusing biharmonic Schr\"odinger equation with a large radial repulsive potential $V(x)$: \begin{equation*} \left{ \begin{aligned} iu_{t}+(\Delta2+V)u-|u|{p-1}u=0,\;\;(t,x) \in {{\bf{R}}\times{\bf{R}}{N}}, u(0, x)=u_{0}(x)\in H{2}({\bf{R}}{N}), \end{aligned}\right. \end{equation*} If $N>8$, \ $1+\frac{8}{N}<p\<1+\frac{8}{N-4}$ (i.e. the $L^{2}$-supercritical and $\dot{H}^{2}$-subcritical case ), and $\langle x\rangle^\beta \big(|V(x)|+|\nabla V(x)|\big)\in L^\infty$ for some $\beta>N+4$, then we firstly prove a global well-posedness and scattering result for the radial data $u_0\in H2({\bf R}N)$ which satisfies that $$ M(u_0){\frac{2-s_c}{s_c}}E(u_0)<M(Q){\frac{2-s_c}{s_c}}E_{0}(Q) \ \ {\rm{and}}\ \ |u_{0}|{\frac{2-s_c}{s_c}}_{L{2}}|H{\frac{1}{2}} u_{0}|{L{2}}<|Q|{\frac{2-s_c}{s_c}}{L{2}}|\Delta Q|{L{2}}, $$ where $s_c=\frac{N}{2}-\frac{4}{p-1}\in(0,2)$, $H=\Delta2+V$ and $Q$ is the ground state of $\Delta2Q+(2-s_c)Q-|Q|{p-1}Q=0$. We crucially establish full Strichartz estimates and smoothing estimates of linear flow with a large poetential $V$, which are fundamental to our scattering results. Finally, based on the method introduced in \cite[T. Boulenger, E. Lenzmann, Blow up for biharmonic NLS, Ann. Sci. $\acute{E}$c. Norm. Sup$\acute{e}$r., 50(2017), 503-544]{B-Lenzmann}, we also prove a blow-up result for a class of potential $V$ and the radial data $u_0\in H2({\bf R}N)$ satisfying that $$ M(u_0){\frac{2-s_c}{s_c}}E(u_0)<M(Q){\frac{2-s_c}{s_c}}E{0}(Q) \ \ {\rm{and}}\ \ |u_{0}|{\frac{2-s_c}{s_c}}_{L{2}}|H{\frac{1}{2}} u_{0}|{L{2}}>|Q|{\frac{2-s_c}{s_c}}{L{2}}|\Delta Q|_{L{2}}. $$

Summary

We haven't generated a summary for this paper yet.