Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive group-regularized logistic elastic net regression (1805.00389v1)

Published 1 May 2018 in stat.ME

Abstract: In high-dimensional data settings, additional information on the features is often available. Examples of such external information in omics research are: (a) p-values from a previous study, (b) a summary of prior information, and (c) omics annotation. The inclusion of this information in the analysis may enhance classification performance and feature selection, but is not straightforward in the standard regression setting. As a solution to this problem, we propose a group-regularized (logistic) elastic net regression method, where each penalty parameter corresponds to a group of features based on the external information. The method, termed gren, makes use of the Bayesian formulation of logistic elastic net regression to estimate both the model and penalty parameters in an approximate empirical-variational Bayes framework. Simulations and an application to a colon cancer microRNA study show that, if the partitioning of the features is informative, classification performance and feature selection are indeed enhanced.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.