Papers
Topics
Authors
Recent
2000 character limit reached

UNIQ: Uniform Noise Injection for Non-Uniform Quantization of Neural Networks (1804.10969v3)

Published 29 Apr 2018 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: We present a novel method for neural network quantization that emulates a non-uniform $k$-quantile quantizer, which adapts to the distribution of the quantized parameters. Our approach provides a novel alternative to the existing uniform quantization techniques for neural networks. We suggest to compare the results as a function of the bit-operations (BOPS) performed, assuming a look-up table availability for the non-uniform case. In this setup, we show the advantages of our strategy in the low computational budget regime. While the proposed solution is harder to implement in hardware, we believe it sets a basis for new alternatives to neural networks quantization.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.