Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Diluted magnetic Dirac-Weyl materials: Susceptibility and ferromagnetism in three-dimensional chiral gapless semimetals (1804.10867v2)

Published 29 Apr 2018 in cond-mat.mes-hall

Abstract: We theoretically investigate the temperature-dependent static susceptibility and long-range magnetic coupling of three-dimensional (3D) chiral gapless electron-hole systems (semimetals) with arbitrary band dispersion [i.e., $\varepsilon(k) \sim kN$, where $k$ is the wave vector and $N$ is a positive integer]. We study the magnetic properties of these systems in the presence of dilute random magnetic impurities. Assuming carrier-mediated Ruderman-Kittel-Kasuya-Yosida indirect exchange interaction, we find that the magnetic ordering of intrinsic 3D chiral semimetals in the presence of dilute magnetic impurities is ferromagnetic for all values of $N$. Using finite-temperature self-consistent field approximation, we calculate the ferromagnetic transition temperature ($T_{\rm c}$). We find that $T_{\rm c}$ increases with increasing $N$ due to the enhanced density of states, and the calculated $T_{\rm c}$ is experimentally accessible assuming reasonable coupling between the magnetic impurities and itinerant carriers.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.