Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AV1 Video Coding Using Texture Analysis With Convolutional Neural Networks (1804.09291v1)

Published 24 Apr 2018 in eess.IV

Abstract: Modern video codecs including the newly developed AOM/AV1 utilize hybrid coding techniques to remove spatial and temporal redundancy. However, efficient exploitation of statistical dependencies measured by a mean squared error (MSE) does not always produce the best psychovisual result. One interesting approach is to only encode visually relevant information and use a different coding method for "perceptually insignificant" regions in the frame, which can lead to substantial data rate reductions while maintaining visual quality. In this paper, we introduce a texture analyzer before encoding the input sequences to identify detail irrelevant texture regions in the frame using convolutional neural networks. We designed and developed a new coding tool referred to as texture mode for AV1, where if texture mode is selected at the encoder, no inter-frame prediction is performed for the identified texture regions. Instead, displacement of the entire region is modeled by just one set of motion parameters. Therefore, only the model parameters are transmitted to the decoder for reconstructing the texture regions. Non-texture regions in the frame are coded conventionally. We show that for many standard test sets, the proposed method achieved significant data rate reductions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.