An Envelope for Davis-Yin Splitting and Strict Saddle Point Avoidance (1804.08739v3)
Abstract: It is known that operator splitting methods based on Forward Backward Splitting (FBS), Douglas-Rachford Splitting (DRS), and Davis-Yin Splitting (DYS) decompose a difficult optimization problems into simpler subproblems under proper convexity and smoothness assumptions. In this paper, we identify an envelope (an objective function) whose gradient descent iteration under a variable metric coincides with DYS iteration. This result generalizes the Moreau envelope for proximal-point iteration and the envelopes for FBS and DRS iterations identified by Patrinos, Stella, and Themelis. Based on the new envelope and the Stable-Center Manifold Theorem, we further show that, when FBS or DRS iterations start from random points, they avoid all strict saddle points with probability one. This results extends the similar results by Lee et al. from gradient descent to splitting methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.