Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method (1804.08291v1)

Published 23 Apr 2018 in math.AP, math-ph, and math.MP

Abstract: We study the large time behavior of solutions to two-dimensional Euler and Navier-Stokes equations linearized about shear flows of the mixing layer type in the unbounded channel $\mathbb{T} \times \mathbb{R}$. Under a simple spectral stability assumption on a self-adjoint operator, we prove a local form of the linear inviscid damping that is uniform with respect to small viscosity. We also prove a local form of the enhanced viscous dissipation that takes place at times of order $\nu{-1/3}$, $\nu$ being the small viscosity. To prove these results, we use a Hamiltonian approach, following the conjugate operator method developed in the study of Schr\"odinger operators, combined with a hypocoercivity argument to handle the viscous case.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.