Papers
Topics
Authors
Recent
2000 character limit reached

A Study on Passage Re-ranking in Embedding based Unsupervised Semantic Search

Published 22 Apr 2018 in cs.CL and cs.IR | (1804.08057v4)

Abstract: State of the art approaches for (embedding based) unsupervised semantic search exploits either compositional similarity (of a query and a passage) or pair-wise word (or term) similarity (from the query and the passage). By design, word based approaches do not incorporate similarity in the larger context (query/passage), while compositional similarity based approaches are usually unable to take advantage of the most important cues in the context. In this paper we propose a new compositional similarity based approach, called variable centroid vector (VCVB), that tries to address both of these limitations. We also presents results using a different type of compositional similarity based approach by exploiting universal sentence embedding. We provide empirical evaluation on two different benchmarks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.