Papers
Topics
Authors
Recent
Search
2000 character limit reached

Vanishing estimates for fully bubbling solutions of $SU(n+1)$ Toda Systems at a singular source

Published 20 Apr 2018 in math.AP | (1804.07685v1)

Abstract: For Gauss curvature equation (or more general Toda systems) defined on two dimensional spaces, the vanishing rate of certain curvature functions on blowup points is a key estimate for numerous applications. However, if these equations have singular sources, very few vanishing estimates can be found. In this article we consider a Toda system with singular sources defined on a Riemann surface and we prove a very surprising vanishing estimates and a reflection phenomenon for certain functions involving the Gauss curvature.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.