Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Polynomial Chaos Expansion in Dependent Random Variables (1804.05676v1)

Published 12 Apr 2018 in math.PR, math.FA, math.ST, and stat.TH

Abstract: This paper introduces a new generalized polynomial chaos expansion (PCE) comprising measure-consistent multivariate orthonormal polynomials in dependent random variables. Unlike existing PCEs, whether classical or generalized, no tensor-product structure is assumed or required. Important mathematical properties of the generalized PCE are studied by constructing orthogonal decomposition of polynomial spaces, explaining completeness of orthogonal polynomials for prescribed assumptions, exploiting whitening transformation for generating orthonormal polynomial bases, and demonstrating mean-square convergence to the correct limit. Analytical formulae are proposed to calculate the mean and variance of a truncated generalized PCE for a general output variable in terms of the expansion coefficients. An example derived from a stochastic boundary-value problem illustrates the generalized PCE approximation in estimating the statistical properties of an output variable for 12 distinct non-product-type probability measures of input variables.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube