Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Connectivity in Random Annulus Graphs and the Geometric Block Model (1804.05013v3)

Published 12 Apr 2018 in cs.DM, cs.DS, cs.IT, cs.LG, and math.IT

Abstract: We provide new connectivity results for {\em vertex-random graphs} or {\em random annulus graphs} which are significant generalizations of random geometric graphs. Random geometric graphs (RGG) are one of the most basic models of random graphs for spatial networks proposed by Gilbert in 1961, shortly after the introduction of the Erd\H{o}s-R\'{en}yi random graphs. They resemble social networks in many ways (e.g. by spontaneously creating cluster of nodes with high modularity). The connectivity properties of RGG have been studied since its introduction, and analyzing them has been significantly harder than their Erd\H{o}s-R\'{en}yi counterparts due to correlated edge formation. Our next contribution is in using the connectivity of random annulus graphs to provide necessary and sufficient conditions for efficient recovery of communities for {\em the geometric block model} (GBM). The GBM is a probabilistic model for community detection defined over an RGG in a similar spirit as the popular {\em stochastic block model}, which is defined over an Erd\H{o}s-R\'{en}yi random graph. The geometric block model inherits the transitivity properties of RGGs and thus models communities better than a stochastic block model. However, analyzing them requires fresh perspectives as all prior tools fail due to correlation in edge formation. We provide a simple and efficient algorithm that can recover communities in GBM exactly with high probability in the regime of connectivity.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.