Optimal liquidation under stochastic price impact (1804.04170v1)
Abstract: We assume a continuous-time price impact model similar to Almgren-Chriss but with the added assumption that the price impact parameters are stochastic processes modeled as correlated scalar Markov diffusions. In this setting, we develop trading strategies for a trader who desires to liquidate his inventory but faces price impact as a result of his trading. For a fixed trading horizon, we perform coefficient expansion on the Hamilton-Jacobi-Bellman equation associated with the trader's value function. The coefficient expansion yields a sequence of partial differential equations that we solve to give closed-form approximations to the value function and optimal liquidation strategy. We examine some special cases of the optimal liquidation problem and give financial interpretations of the approximate liquidation strategies in these cases. Finally, we provide numerical examples to demonstrate the effectiveness of the approximations.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.