Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully Dynamic Effective Resistances (1804.04038v1)

Published 11 Apr 2018 in cs.DS

Abstract: In this paper we consider the \emph{fully-dynamic} All-Pairs Effective Resistance problem, where the goal is to maintain effective resistances on a graph $G$ among any pair of query vertices under an intermixed sequence of edge insertions and deletions in $G$. The effective resistance between a pair of vertices is a physics-motivated quantity that encapsulates both the congestion and the dilation of a flow. It is directly related to random walks, and it has been instrumental in the recent works for designing fast algorithms for combinatorial optimization problems, graph sparsification, and network science. We give a data-structure that maintains $(1+\epsilon)$-approximations to all-pair effective resistances of a fully-dynamic unweighted, undirected multi-graph $G$ with $\tilde{O}(m{4/5}\epsilon{-4})$ expected amortized update and query time, against an oblivious adversary. Key to our result is the maintenance of a dynamic \emph{Schur complement}~(also known as vertex resistance sparsifier) onto a set of terminal vertices of our choice. This maintenance is obtained (1) by interpreting the Schur complement as a sum of random walks and (2) by randomly picking the vertex subset into which the sparsifier is constructed. We can then show that each update in the graph affects a small number of such walks, which in turn leads to our sub-linear update time. We believe that this local representation of vertex sparsifiers may be of independent interest.

Citations (8)

Summary

We haven't generated a summary for this paper yet.