Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully Dynamic Spectral Vertex Sparsifiers and Applications (1906.10530v1)

Published 24 Jun 2019 in cs.DS

Abstract: We study \emph{dynamic} algorithms for maintaining spectral vertex sparsifiers of graphs with respect to a set of terminals $T$ of our choice. Such objects preserve pairwise resistances, solutions to systems of linear equations, and energy of electrical flows between the terminals in $T$. We give a data structure that supports insertions and deletions of edges, and terminal additions, all in sublinear time. Our result is then applied to the following problems. (1) A data structure for maintaining solutions to Laplacian systems $\mathbf{L} \mathbf{x} = \mathbf{b}$, where $\mathbf{L}$ is the Laplacian matrix and $\mathbf{b}$ is a demand vector. For a bounded degree, unweighted graph, we support modifications to both $\mathbf{L}$ and $\mathbf{b}$ while providing access to $\epsilon$-approximations to the energy of routing an electrical flow with demand $\mathbf{b}$, as well as query access to entries of a vector $\tilde{\mathbf{x}}$ such that $\left\lVert \tilde{\mathbf{x}}-\mathbf{L}{\dagger} \mathbf{b} \right\rVert_{\mathbf{L}} \leq \epsilon \left\lVert \mathbf{L}{\dagger} \mathbf{b} \right\rVert_{\mathbf{L}}$ in $\tilde{O}(n{11/12}\epsilon{-5})$ expected amortized update and query time. (2) A data structure for maintaining All-Pairs Effective Resistance. For an intermixed sequence of edge insertions, deletions, and resistance queries, our data structure returns $(1 \pm \epsilon)$-approximation to all the resistance queries against an oblivious adversary with high probability. Its expected amortized update and query times are $\tilde{O}(\min(m{3/4},n{5/6} \epsilon{-2}) \epsilon{-4})$ on an unweighted graph, and $\tilde{O}(n{5/6}\epsilon{-6})$ on weighted graphs. These results represent the first data structures for maintaining key primitives from the Laplacian paradigm for graph algorithms in sublinear time without assumptions on the underlying graph topologies.

Citations (41)

Summary

We haven't generated a summary for this paper yet.