Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Phaseless Auxiliary-Field Quantum Monte Carlo on Graphical Processing Units (1804.03310v1)

Published 10 Apr 2018 in physics.comp-ph and cond-mat.str-el

Abstract: We present an implementation of phaseless Auxiliary-Field Quantum Monte Carlo (ph-AFQMC) utilizing graphical processing units (GPUs). The AFQMC method is recast in terms of matrix operations which are spread across thousands of processing cores and are executed in batches using custom Compute Unified Device Architecture kernels and the hardware-optimized cuBLAS matrix library. Algorithmic advances include a batched Sherman-Morrison-Woodbury algorithm to quickly update matrix determinants and inverses, density-fitting of the two-electron integrals, an energy algorithm involving a high-dimensional precomputed tensor, and the use of single-precision floating point arithmetic. These strategies result in dramatic reductions in wall-times for both single- and multi-determinant trial wavefunctions. For typical calculations we find speed-ups of roughly two orders of magnitude using just a single GPU card. Furthermore, we achieve near-unity parallel efficiency using 8 GPU cards on a single node, and can reach moderate system sizes via a local memory-slicing approach. We illustrate the robustness of our implementation on hydrogen chains of increasing length, and through the calculation of all-electron ionization potentials of the first-row transition metal atoms. We compare long imaginary-time calculations utilizing a population control algorithm with our previously published correlated sampling approach, and show that the latter improves not only the efficiency but also the accuracy of the computed ionization potentials. Taken together, the GPU implementation combined with correlated sampling provides a compelling computational method that will broaden the application of ph-AFQMC to the description of realistic correlated electronic systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.