Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Predictive Inference For Finite Population Quantities Under Informative Sampling

Published 9 Apr 2018 in stat.ME | (1804.03122v1)

Abstract: We investigate Bayesian predictive inference for finite population quantities when there are unequal probabilities of selection. Only limited information about the sample design is available; i.e., only the first-order selection probabilities corresponding to the sample units are known. Our methodology, unlike that of Chambers, Dorfman and Wang (1998), can be used to make inference for finite population quantities and provides measures of precision and intervals. Moreover, our methodology, using Markov chain Monte Carlo methods, avoids the necessity of using asymptotic closed form approximations, necessary for the other approaches that have been proposed. A set of simulated examples shows that the informative model provides improved precision over a standard ignorable model, and corrects for the selection bias.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.