Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Growth in linear algebraic groups and permutation groups: towards a unified perspective (1804.03049v4)

Published 9 Apr 2018 in math.GR

Abstract: By now, we have a product theorem in every finite simple group $G$ of Lie type, with the strength of the bound depending only in the rank of $G$. Such theorems have numerous consequences: bounds on the diameters of Cayley graphs, spectral gaps, and so forth. For the alternating group Alt_n, we have a quasipolylogarithmic diameter bound (Helfgott-Seress 2014), but it does not rest on a product theorem. We shall revisit the proof of the bound for Alt_n, bringing it closer to the proof for linear algebraic groups, and making some common themes clearer. As a result, we will show how to prove a product theorem for Alt_n -- not of full strength, as that would be impossible, but strong enough to imply the diameter bound.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube