Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Total domination in cubic Knödel graphs (1804.02532v1)

Published 7 Apr 2018 in math.CO

Abstract: A subset $D$ of vertices of a graph $G$ is a \textit{dominating set} if for each $u\in V(G)\setminus D$, $u$ is adjacent to some vertex $v\in D$. The \textit{dominating number}, $\gamma(G)$ of $G$, is the minimum cardinality of a dominating set of $G$. A set $D\subseteq V(G)$ is a \textit{total dominating set} if for each $u\in V(G)$, $u$ is adjacent to some vertex $v\in D$. the The \textit{total dominating number}, $\gamma_t(G)$ of $G$, is the minimum cardinality of a total dominating set of $G$. For an even integer $n\ge2$ and $1\le\Delta\le\lfloor\log_2n\rfloor$, a \textit{Kn\"odel graph} $W_{\Delta,n}$ is a $\Delta$-regular bipartite graph of even order $n$, with vertices $(i,j)$, for $i=1,2$ and $0\le j\le n/2-1$, where for every $j$,$0\le j\le n/2-1$,there is an edge between vertex $(1,j)$ and every vertex $(2,j+2k-1 \text{(mod(n/2)})$, for $k=0,1,\cdots,\Delta-1$. In this paper, we determine the total domination number in $3$-regular Kn\"odel graphs $W_{3,n}$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.