Application of Symmetry Groups to the Observability Analysis of Partial Differential Equations (1804.01717v3)
Abstract: Symmetry groups of PDEs allow to transform solutions continuously into other solutions. In this paper, we use this property for the observability analysis of nonlinear PDEs with input and output. Based on a differential-geometric representation of the nonlinear system, we derive conditions for the existence of special symmetry groups that do not change the trajectories of the input and the output. If such a symmetry group exists, every solution can be transformed into other solutions with the same input and output trajectories but different initial conditions, and this property can be used to prove that the system is not observable. We also put emphasis on showing how the approach simplifies for linear systems, and how it is related to the well-known observability concepts from infinite-dimensional linear systems theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.