Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Application of Symmetry Groups to the Observability Analysis of Partial Differential Equations (1804.01717v3)

Published 5 Apr 2018 in math.OC, math.AP, math.DG, and math.DS

Abstract: Symmetry groups of PDEs allow to transform solutions continuously into other solutions. In this paper, we use this property for the observability analysis of nonlinear PDEs with input and output. Based on a differential-geometric representation of the nonlinear system, we derive conditions for the existence of special symmetry groups that do not change the trajectories of the input and the output. If such a symmetry group exists, every solution can be transformed into other solutions with the same input and output trajectories but different initial conditions, and this property can be used to prove that the system is not observable. We also put emphasis on showing how the approach simplifies for linear systems, and how it is related to the well-known observability concepts from infinite-dimensional linear systems theory.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube