Papers
Topics
Authors
Recent
2000 character limit reached

Propagation of chaos and the many-demes limit for weakly interacting diffusions in the sparse regime

Published 3 Apr 2018 in math.PR | (1804.01034v2)

Abstract: Propagation of chaos is a well-studied phenomenon and shows that weakly interacting diffusions may become independent as the system size converges to infinity. Most of the literature focuses on the case of exchangeable systems where all involved diffusions have the same distribution and are "of the same size". In this paper, we analyze the case where only a few diffusions start outside of an accessible trap. Our main result shows that in this "sparse regime" the system of weakly interacting diffusions converges in distribution to a forest of excursions from the trap. In particular, initial independence propagates in the limit and results in a forest of independent trees.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.