Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

SampleAhead: Online Classifier-Sampler Communication for Learning from Synthesized Data (1804.00248v2)

Published 1 Apr 2018 in cs.CV

Abstract: State-of-the-art techniques of artificial intelligence, in particular deep learning, are mostly data-driven. However, collecting and manually labeling a large scale dataset is both difficult and expensive. A promising alternative is to introduce synthesized training data, so that the dataset size can be significantly enlarged with little human labor. But, this raises an important problem in active vision: given an {\bf infinite} data space, how to effectively sample a {\bf finite} subset to train a visual classifier? This paper presents an approach for learning from synthesized data effectively. The motivation is straightforward -- increasing the probability of seeing difficult training data. We introduce a module named {\bf SampleAhead} to formulate the learning process into an online communication between a {\em classifier} and a {\em sampler}, and update them iteratively. In each round, we adjust the sampling distribution according to the classification results, and train the classifier using the data sampled from the updated distribution. Experiments are performed by introducing synthesized images rendered from ShapeNet models to assist PASCAL3D+ classification. Our approach enjoys higher classification accuracy, especially in the scenario of a limited number of training samples. This demonstrates its efficiency in exploring the infinite data space.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.