Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Synthetic Data for Object Classification in Industrial Applications (2212.04790v1)

Published 9 Dec 2022 in cs.CV

Abstract: One of the biggest challenges in machine learning is data collection. Training data is an important part since it determines how the model will behave. In object classification, capturing a large number of images per object and in different conditions is not always possible and can be very time-consuming and tedious. Accordingly, this work explores the creation of artificial images using a game engine to cope with limited data in the training dataset. We combine real and synthetic data to train the object classification engine, a strategy that has shown to be beneficial to increase confidence in the decisions made by the classifier, which is often critical in industrial setups. To combine real and synthetic data, we first train the classifier on a massive amount of synthetic data, and then we fine-tune it on real images. Another important result is that the amount of real images needed for fine-tuning is not very high, reaching top accuracy with just 12 or 24 images per class. This substantially reduces the requirements of capturing a great amount of real data.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.