Papers
Topics
Authors
Recent
2000 character limit reached

Hyperbolic vortices and Dirac fields in 2+1 dimensions (1803.11120v2)

Published 29 Mar 2018 in hep-th, gr-qc, math-ph, and math.MP

Abstract: Starting from the geometrical interpretation of integrable vortices on two-dimensional hyperbolic space as conical singularities, we explain how this picture can be expressed in the language of Cartan connections, and how it can be lifted to the double cover of three-dimensional Anti-de Sitter space viewed as a trivial circle bundle over hyperbolic space. We show that vortex configurations on the double cover of AdS space give rise to solutions of the Dirac equation minimally coupled to the magnetic field of the vortex. After stereographic projection to (2+1)-dimensional Minkowski space we obtain, from each lifted hyperbolic vortex, a Dirac field and an abelian gauge field which solve a Lorentzian, (2+1)-dimensional version of the Seiberg-Witten equations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.