Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Birch and Swinnerton-Dyer conjecture in the complex multiplication case and the congruent number problem (1803.11074v4)

Published 28 Mar 2018 in math.NT and math.AG

Abstract: For an elliptic curve $E$ over $K$, the Birch and Swinnerton-Dyer conjecture predicts that the rank of Mordell-Weil group $E(K)$ is equal to the order of the zero of $L(E_{/ K},s)$ at $s=1$. In this paper, we shall give a proof for elliptic curves with complex multiplications. The key method of the proof is to reduce the Galois action of infinite order on the Tate module of an elliptic curve to that of finite order by using the $p$-adic Hodge theory. As a corollary, we can determine whether a given natural number is a congruent number (congruent number problem). This problem is one of the oldest unsolved problems in mathematics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube