Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the Algorithmic Power of Spiking Neural Networks (1803.10375v2)

Published 28 Mar 2018 in cs.NE

Abstract: Spiking Neural Networks (SNN) are mathematical models in neuroscience to describe the dynamics among a set of neurons that interact with each other by firing instantaneous signals, a.k.a., spikes. Interestingly, a recent advance in neuroscience [Barrett-Den`eve-Machens, NIPS 2013] showed that the neurons' firing rate, i.e., the average number of spikes fired per unit of time, can be characterized by the optimal solution of a quadratic program defined by the parameters of the dynamics. This indicated that SNN potentially has the computational power to solve non-trivial quadratic programs. However, the results were justified empirically without rigorous analysis. We put this into the context of natural algorithms and aim to investigate the algorithmic power of SNN. Especially, we emphasize on giving rigorous asymptotic analysis on the performance of SNN in solving optimization problems. To enforce a theoretical study, we first identify a simplified SNN model that is tractable for analysis. Next, we confirm the empirical observation in the work of Barrett et al. by giving an upper bound on the convergence rate of SNN in solving the quadratic program. Further, we observe that in the case where there are infinitely many optimal solutions, SNN tends to converge to the one with smaller l1 norm. We give an affirmative answer to our finding by showing that SNN can solve the l1 minimization problem under some regular conditions. Our main technical insight is a dual view of the SNN dynamics, under which SNN can be viewed as a new natural primal-dual algorithm for the l1 minimization problem. We believe that the dual view is of independent interest and may potentially find interesting interpretation in neuroscience.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.