Papers
Topics
Authors
Recent
2000 character limit reached

Incremental Training of Deep Convolutional Neural Networks

Published 27 Mar 2018 in cs.LG and stat.ML | (1803.10232v1)

Abstract: We propose an incremental training method that partitions the original network into sub-networks, which are then gradually incorporated in the running network during the training process. To allow for a smooth dynamic growth of the network, we introduce a look-ahead initialization that outperforms the random initialization. We demonstrate that our incremental approach reaches the reference network baseline accuracy. Additionally, it allows to identify smaller partitions of the original state-of-the-art network, that deliver the same final accuracy, by using only a fraction of the global number of parameters. This allows for a potential speedup of the training time of several factors. We report training results on CIFAR-10 for ResNet and VGGNet.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.