Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

New formulas for the Laplacian of distance functions and applications (1803.09687v2)

Published 26 Mar 2018 in math.MG and math.FA

Abstract: The goal of the paper is to prove an exact representation formula for the Laplacian of the distance (and more generally for an arbitrary 1-Lipschitz function) in the framework of metric measure spaces satisfying Ricci curvature lower bounds in a synthetic sense (more precisely in essentially non-branching MCP(K,N)-spaces). Such a representation formula makes apparent the classical upper bounds and also some new lower bounds, together with a precise description of the singular part. The exact representation formula for the Laplacian of 1-Lipschitz functions (in particular for distance functions) holds also (and seems new) in a general complete Riemannian manifold. We apply these results to prove the equivalence of CD(K,N) and a dimensional Bochner inequality on signed distance functions. Moreover we obtain a measure-theoretic Splitting Theorem for infinitesimally Hilbertian essentially non-branching spaces verifying MCP(0,N).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.