Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rule-based Autoregressive Moving Average Models for Forecasting Load on Special Days: A Case Study for France (1803.09590v1)

Published 26 Mar 2018 in stat.AP

Abstract: This paper presents a case study on short-term load forecasting for France, with emphasis on special days, such as public holidays. We investigate the generalisability to French data of a recently proposed approach, which generates forecasts for normal and special days in a coherent and unified framework, by incorporating subjective judgment in univariate statistical models using a rule-based methodology. The intraday, intraweek, and intrayear seasonality in load are accommodated using a rule-based triple seasonal adaptation of a seasonal autoregressive moving average (SARMA) model. We find that, for application to French load, the method requires an important adaption. We also adapt a recently proposed SARMA model that accommodates special day effects on an hourly basis using indicator variables. Using a rule formulated specifically for the French load, we compare the SARMA models with a range of different benchmark methods based on an evaluation of their point and density forecast accuracy. As sophisticated benchmarks, we employ the rule-based triple seasonal adaptations of Holt-Winters-Taylor (HWT) exponential smoothing and artificial neural networks (ANNs). We use nine years of half-hourly French load data, and consider lead times ranging from one half-hour up to a day ahead. The rule-based SARMA approach generated the most accurate forecasts.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.