Papers
Topics
Authors
Recent
2000 character limit reached

Dushnik-Miller dimension of TD-Delaunay complexes (1803.09576v1)

Published 26 Mar 2018 in cs.DM and math.CO

Abstract: TD-Delaunay graphs, where TD stands for triangular distance, is a variation of the classical Delaunay triangulations obtained from a specific convex distance function. Bonichon et. al. noticed that every triangulation is the TD-Delaunay graph of a set of points in $\mathbb{R}2$, and conversely every TD-Delaunay graph is planar. It seems natural to study the generalization of this property in higher dimensions. Such a generalization is obtained by defining an analogue of the triangular distance for $\mathbb{R}d$. It is easy to see that TD-Delaunay complexes of $\mathbb{R}{d-1}$ are of Dushnik-Miller dimension $d$. The converse holds for $d=2$ or $3$ and it was conjectured independently by Mary and Evans et. al. to hold for larger $d$. Here we disprove the conjecture already for $d = 4$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.