Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Asymptotic expansions of the Witten-Reshetikhin-Turaev Invariants of Mapping Tori I (1803.09510v3)

Published 26 Mar 2018 in math.DG

Abstract: In this paper we engage in a general study of the asymptotic expansion of the Witten-Reshetikhin-Turaev invariants of mapping tori of surface mapping class group elements. We use the geometric construction of the Witten-Reshetikhin-Turaev TQFT via the geometric quantization of moduli spaces of flat connections on surfaces. We identify assumptions on the mapping class group elements that allow us to provide a full asymptotic expansion. In particular, we show that our results apply to all pseudo-Anosov mapping classes on a punctured torus and show by example that our assumptions on the mapping class group elements are strictly weaker than hitherto successfully considered assumptions in this context. The proof of our main theorem relies on our new results regarding asymptotic expansions of oscillatory integrals, which allows us to go significantly beyond the standard transversely cut out assumption on the fixed point set. This makes use of Picard-Lefschetz theory for Laplace integrals.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.