Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Sparse-grid Gauss-Hermite Filter (1803.09272v1)

Published 25 Mar 2018 in eess.SP

Abstract: In this paper, a new nonlinear filter based on sparse-grid quadrature method has been proposed. The proposed filter is named as adaptive sparse-grid Gauss-Hermite filter (ASGHF). Ordinary sparse-grid technique treats all the dimensions equally, whereas the ASGHF assigns a fewer number of points along the dimensions with lower nonlinearity. It uses adaptive tensor product to construct multidimensional points until a predefined error tolerance level is reached. The performance of the proposed filter is illustrated with two nonlinear filtering problems. Simulation results demonstrate that the new algorithm achieves a similar accuracy as compared to sparse-grid Gauss-Hermite filter (SGHF) and Gauss-Hermite filter (GHF) with a considerable reduction in computational load. Further, in the conventional GHF and SGHF, any increase in the accuracy level may result in an unacceptably high increase in the computational burden. However, in ASGHF, a little increase in estimation accuracy is possible with a limited increase in computational burden by varying the error tolerance level and the error weighting parameter. This enables the online estimator to operate near full efficiency with a predefined computational budget.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.