Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

P2P-NET: Bidirectional Point Displacement Net for Shape Transform (1803.09263v4)

Published 25 Mar 2018 in cs.GR and cs.CV

Abstract: We introduce P2P-NET, a general-purpose deep neural network which learns geometric transformations between point-based shape representations from two domains, e.g., meso-skeletons and surfaces, partial and complete scans, etc. The architecture of the P2P-NET is that of a bi-directional point displacement network, which transforms a source point set to a target point set with the same cardinality, and vice versa, by applying point-wise displacement vectors learned from data. P2P-NET is trained on paired shapes from the source and target domains, but without relying on point-to-point correspondences between the source and target point sets. The training loss combines two uni-directional geometric losses, each enforcing a shape-wise similarity between the predicted and the target point sets, and a cross-regularization term to encourage consistency between displacement vectors going in opposite directions. We develop and present several different applications enabled by our general-purpose bidirectional P2P-NET to highlight the effectiveness, versatility, and potential of our network in solving a variety of point-based shape transformation problems.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.