Aligning Across Large Gaps in Time (1803.08542v1)
Abstract: We present a method of temporally-invariant image registration for outdoor scenes, with invariance across time of day, across seasonal variations, and across decade-long periods, for low- and high-texture scenes. Our method can be useful for applications in remote sensing, GPS-denied UAV localization, 3D reconstruction, and many others. Our method leverages a recently proposed approach to image registration, where fully-convolutional neural networks are used to create feature maps which can be registered using the Inverse-Composition Lucas-Kanade algorithm (ICLK). We show that invariance that is learned from satellite imagery can be transferable to time-lapse data captured by webcams mounted on buildings near ground-level.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.