Lagrange's Theorem For Hom-Groups (1803.07678v2)
Abstract: Hom-groups are nonassociative generalizations of groups where the unitality and associativity are twisted by a map. We show that a Hom-group (G, {\alpha}) is a pointed idempotent quasigroup (pique). We use Cayley table of quasigroups to introduce some examples of Hom-groups. Introducing the notions of Hom-subgroups and cosets we prove Lagrange's theorem for finite Hom-groups. This states that the order of any Hom-subgroup H of a finite Hom-group G divides the order of G. We linearize Hom-groups to obtain a class of nonassociative Hopf algebras called Hom-Hopf algebras. As an application of our results, we show that the dimension of a Hom-sub-Hopf algebra of the finite dimensional Hom-group Hopf algebra KG divides the order of G. The new tools introduced in this paper could potentially have applications in theories of quasigroups, nonassociative Hopf algebras, Hom-type objects, combinatorics, and cryptography.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.