Papers
Topics
Authors
Recent
2000 character limit reached

Asymmetric kernel in Gaussian Processes for learning target variance (1803.06952v1)

Published 19 Mar 2018 in cs.LG, cs.CV, and stat.ML

Abstract: This work incorporates the multi-modality of the data distribution into a Gaussian Process regression model. We approach the problem from a discriminative perspective by learning, jointly over the training data, the target space variance in the neighborhood of a certain sample through metric learning. We start by using data centers rather than all training samples. Subsequently, each center selects an individualized kernel metric. This enables each center to adjust the kernel space in its vicinity in correspondence with the topology of the targets --- a multi-modal approach. We additionally add descriptiveness by allowing each center to learn a precision matrix. We demonstrate empirically the reliability of the model.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.