Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 208 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rare Feature Selection in High Dimensions (1803.06675v3)

Published 18 Mar 2018 in stat.ME, math.ST, stat.CO, stat.ML, and stat.TH

Abstract: It is common in modern prediction problems for many predictor variables to be counts of rarely occurring events. This leads to design matrices in which many columns are highly sparse. The challenge posed by such "rare features" has received little attention despite its prevalence in diverse areas, ranging from natural language processing (e.g., rare words) to biology (e.g., rare species). We show, both theoretically and empirically, that not explicitly accounting for the rareness of features can greatly reduce the effectiveness of an analysis. We next propose a framework for aggregating rare features into denser features in a flexible manner that creates better predictors of the response. Our strategy leverages side information in the form of a tree that encodes feature similarity. We apply our method to data from TripAdvisor, in which we predict the numerical rating of a hotel based on the text of the associated review. Our method achieves high accuracy by making effective use of rare words; by contrast, the lasso is unable to identify highly predictive words if they are too rare. A companion R package, called rare, implements our new estimator, using the alternating direction method of multipliers.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.