Papers
Topics
Authors
Recent
2000 character limit reached

Layer structure of irreducible Lie algebra modules (1803.06592v1)

Published 18 Mar 2018 in math.RT, hep-th, math-ph, math.CO, and math.MP

Abstract: Let $\mathfrak{g}$ be a finite-dimensional simple complex Lie algebra. A layer sum is introduced as the sum of formal exponentials of the distinct weights appearing in an irreducible $\mathfrak{g}$-module. It is argued that the character of every finite-dimensional irreducible $\mathfrak{g}$-module admits a decomposition in terms of layer sums, with only non-negative integer coefficients. Ensuing results include a new approach to the computation of Weyl characters and weight multiplicities, and a closed-form expression for the number of distinct weights in a finite-dimensional irreducible $\mathfrak{g}$-module. The latter is given by a polynomial in the Dynkin labels, of degree equal to the rank of $\mathfrak{g}$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.