Papers
Topics
Authors
Recent
2000 character limit reached

Projection-Based Finite Elements for Nonlinear Function Spaces (1803.06576v1)

Published 17 Mar 2018 in math.NA

Abstract: We introduce a novel type of approximation spaces for functions with values in a nonlinear manifold. The discrete functions are constructed by piecewise polynomial interpolation in a Euclidean embedding space, and then projecting pointwise onto the manifold. We show optimal interpolation error bounds with respect to Lebesgue and Sobolev norms. Additionally, we show similar bounds for the test functions, i.e., variations of discrete functions. Combining these results with a nonlinear C\'ea lemma, we prove optimal $L2$ and $H1$ discretization error bounds for harmonic maps from a planar domain into a smooth manifold. All these error bounds are also verified numerically.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.