On the homotopy types of $\mathrm{Sp}(n)$ gauge groups
Abstract: Let $\mathcal{G}{k,n}$ be the gauge group of the principal $\mathrm{Sp}(n)$-bundle over $S4$ corresponding to $k\in\mathbb{Z}\cong\pi_3(\mathrm{Sp}(n))$. We refine the result of Sutherland on the homotopy types of $\mathcal{G}{k,n}$ and relate it with the order of a certain Samelson product in $\mathrm{Sp}(n)$. Then we classify the $p$-local homotopy types of $\mathcal{G}_{k,n}$ for $(p-1)2+1\ge 2n$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.