Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The diagrammatic coaction and the algebraic structure of cut Feynman integrals (1803.05894v1)

Published 15 Mar 2018 in hep-th and hep-ph

Abstract: We present a new formula for the coaction of a large class of integrals. When applied to one-loop (cut) Feynman integrals, it can be given a diagrammatic representation purely in terms of pinches and cuts of the edges of the graph. The coaction encodes the algebraic structure of these integrals, and offers ways to extract important properties of complicated integrals from simpler functions. In particular, it gives direct access to discontinuities of Feynman integrals and facilitates a straightforward derivation of the differential equations they satisfy, which we illustrate in the case of the pentagon.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube