Papers
Topics
Authors
Recent
2000 character limit reached

Quantitative Susceptibility Mapping using Deep Neural Network: QSMnet

Published 15 Mar 2018 in eess.IV | (1803.05627v2)

Abstract: Deep neural networks have demonstrated promising potential for the field of medical image reconstruction. In this work, an MRI reconstruction algorithm, which is referred to as quantitative susceptibility mapping (QSM), has been developed using a deep neural network in order to perform dipole deconvolution, which restores magnetic susceptibility source from an MRI field map. Previous approaches of QSM require multiple orientation data (e.g. Calculation of Susceptibility through Multiple Orientation Sampling or COSMOS) or regularization terms (e.g. Truncated K-space Division or TKD; Morphology Enabled Dipole Inversion or MEDI) to solve the ill-conditioned deconvolution problem. Unfortunately, they either require long multiple orientation scans or suffer from artifacts. To overcome these shortcomings, a deep neural network, QSMnet, is constructed to generate a high quality susceptibility map from single orientation data. The network has a modified U-net structure and is trained using gold-standard COSMOS QSM maps. 25 datasets from 5 subjects (5 orientation each) were applied for patch-wise training after doubling the data using augmentation. Two additional datasets of 5 orientation data were used for validation and test (one dataset each). The QSMnet maps of the test dataset were compared with those from TKD and MEDI for image quality and consistency in multiple head orientations. Quantitative and qualitative image quality comparisons demonstrate that the QSMnet results have superior image quality to those of TKD or MEDI and have comparable image quality to those of COSMOS. Additionally, QSMnet maps reveal substantially better consistency across the multiple orientations than those from TKD or MEDI. As a preliminary application, the network was tested for two patients. The QSMnet maps showed similar lesion contrasts with those from MEDI, demonstrating potential for future applications.

Citations (148)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.